213 research outputs found

    Using evolutionary design to interactively sketch car silhouettes and stimulate designer's creativity

    Full text link
    An Interactive Genetic Algorithm is proposed to progressively sketch the desired side-view of a car profile. It adopts a Fourier decomposition of a 2D profile as the genotype, and proposes a cross-over mechanism. In addition, a formula function of two genes' discrepancies is fitted to the perceived dissimilarity between two car profiles. This similarity index is intensively used, throughout a series of user tests, to highlight the added value of the IGA compared to a systematic car shape exploration, to prove its ability to create superior satisfactory designs and to stimulate designer's creativity. These tests have involved six designers with a design goal defined by a semantic attribute. The results reveal that if "friendly" is diversely interpreted in terms of car shapes, "sportive" denotes a very conventional representation which may be a limitation for shape renewal

    Eco-design implementation for complex industrial system (From scenario-based LCA to the definition of an eco-innovative R&D projects portfolio)

    Get PDF
    Face à l émergence des problématiques environnementales issues des activités humaines, l écoconception s attache à offrir une réponse satisfaisante dans le domaine de la conception de produits et services. Cependant, lorsque les produits considérés deviennent des systèmes industriels complexes, caractérisés entre autres par un grand nombre de composants et sous-systèmes, un cycle de vie extrêmement long et incertain, ou des interactions complexes avec leur environnement géographique et industriel, un manque évident de méthodologies et d outils se fait ressentir. Ce changement d échelle apporte en effet des contraintes différentes aussi bien dans l évaluation des impacts environnementaux générés au cours du cycle de vie du système (gestion et qualité des données, niveau de détail de l étude par rapport aux ressources disponibles ) que dans l identification de réponses adaptées (gestion de la multidisciplinarité et des ressources disponibles, formation des acteurs, inclusion dans un contexte de R&D très amont ). Cette thèse vise donc à développer une méthodologie de mise en œuvre d une démarche d éco-conception de systèmes industriels complexes. Une méthodologie générale est tout d abord proposée, basée sur un processus DMAIC (Define, Measure, Analyse, Improve, Control). Cette méthodologie permet de définir de manière formalisée le cadre de la démarche (objectifs, ressources, périmètre, phasage ) et d accompagner rigoureusement l approche d écoconception sur le système considéré. Une première étape d évaluation environnementale basée sur l Analyse du Cycle de Vie (ACV) à haut niveau systémique est ainsi réalisée. Etant donnée la complexité du cycle de vie considéré et la variabilité d exploitation d un système industriel d un site à l autre, une approche par scénario est proposée afin d appréhender rapidement l étendue possible des impacts environnementaux. Les scénarios d exploitation sont définis à l aide de la matrice SRI (Stranford Research Institute) et intègrent de nombreux éléments rarement abordés en ACV, comme la maintenance préventive et corrective, la mise à niveau des sous-systèmes ou encore la modulation de la durée de vie du système en fonction du contexte économique. A l issue de cette ACV les principaux postes impactants du cycle de vie du système sont connus et permettent d entreprendre la seconde partie de la démarche d éco-conception centrée sur l amélioration environnementale. Un groupe de travail multidisciplinaire est réuni lors d une séance de créativité centrée autour de la roue de la stratégie d éco-conception (ou roue de Brezet), un outil d éco-innovation peu consommateur de ressources et ne nécessitant qu une faible expertise environnementale. Les idées générées en créativité sont alors traitées par trois filtres successifs, qui permettent : (1) de présélectionner les meilleurs projets et de les approfondir ; (2) de constituer un portefeuille de projets de R&D par une approche multicritère évaluant leur performance environnementale, mais également technique, économique et de création de valeurs pour les clients ; (3) de contrôler l équilibre du portefeuille constitué en fonction de la stratégie de l entreprise et de la diversité des projets considérés (aspects court/moyen/long terme, niveau systémique considéré ). L ensemble des travaux a été appliqué et validé chez Alstom Grid sur des sous-stations de conversion électrique utilisées dans l industrie de l aluminium primaire. Le déploiement de la méthodologie a permis d initier une démarche solide d écoconception reconnue par l entreprise et de générer au final un portefeuille de 9 projets de R&D écoinnovants qui seront mis en œuvre dans les prochains mois.Face to the growing awareness of environmental concerns issued from human activities, eco-design aims at offering a satisfying answer in the products and services development field. However when the considered products become complex industrial systems, there is a lack of adapted methodologies and tools. These systems are among others characterised by a large number of components and subsystems, an extremely long and uncertain life cycle, or complex interactions with their geographical and industrial environment. This change of scale actually brings different constraints, as well in the evaluation of environmental impacts generated all along the system life cycle (data management and quality, detail level according to available resources ) as in the identification of adapted answers (management of multidisciplinary aspects and available resources, players training, inclusion in an upstream R&D context ). So this dissertation aims at developing a methodology to implement ecodesign of complex industrial systems. A general methodology is first proposed, based on a DMAIC process (Define, Measure, Analyse, Improve, Control). This methodology allows defining in a structured way the framework (objectives, resources, perimeter, phasing ) and rigorously supporting the ecodesign approach applied on the system. A first step of environmental evaluation based on Life-Cycle Assessment (LCA) is thus performed at a high systemic level. Given the complexity of the system life cycle as well as the exploitation variability that may exist from one site to another, a scenario-based approach is proposed to quickly consider the space of possible environmental impacts. Scenarios of exploitation are defined thanks to the SRI (Stanford Research Institute) matrix and they include numerous elements that are rarely considered in LCA, like preventive and corrective maintenance, subsystems upgrading or lifetime modulation according to the economic context. At the conclusion of this LCA the main impacting elements of the system life cycle are known and they permit to initiate the second step of the eco-design approach centred on environmental improvement. A multidisciplinary working group perform a creativity session centred on the eco-design strategy wheel (or Brezet wheel), a resource-efficient eco-innovation tool that requires only a basic environmental knowledge. Ideas generated during creativity are then analysed through three successive filters allowing: (1) to pre-select and to refine the best projects; (2) to build a R&D projects portfolio thanks to a multi-criteria approach assessing not only their environmental performance, but also their technical, economic and customers value creation performance; (3) to control the portfolio balance according to the company strategy and the projects diversity (short/middle/long term aspect, systemic level ). All this work was applied and validated at Alstom Grid on electrical conversion substations used in the primary aluminium industry. The methodology deployment has allowed initiating a robust eco-design approach recognized by the company and finally generating a portfolio composed of 9 eco-innovative R&D projects that will be started in the coming months.CHATENAY MALABRY-Ecole centrale (920192301) / SudocSudocFranceF

    Etude morphostructurale de la zone sud des rides Nouvelle-Calédonie et Loyauté (Zone Economique Exclusive de Nouvelle-Calédonie, Pacifique Sud-Ouest)

    Get PDF
    Les données de la campagne ZoNéCo 1 permettent de préciser la morphostructure du Sud des rides calédonienne et Loyauté qui s'avèrent plus complexes que les cartes précédentes ne le montraient, mais on retrouve les principales structures de la région Calédonie-Loyauté. L'imagerie met en évidence les zones de roches nues ou encroûtées, la présence d'écoulements gravitaires du Sud du bassin des Loyauté vers le bassin Sud-Fidjien. (Résumé d'auteur

    DNA mechanics as a tool to probe helicase and translocase activity

    Get PDF
    Helicases and translocases are proteins that use the energy derived from ATP hydrolysis to move along or pump nucleic acid substrates. Single molecule manipulation has proved to be a powerful tool to investigate the mechanochemistry of these motors. Here we first describe the basic mechanical properties of DNA unraveled by single molecule manipulation techniques. Then we demonstrate how the knowledge of these properties has been used to design single molecule assays to address the enzymatic mechanisms of different translocases. We report on four single molecule manipulation systems addressing the mechanism of different helicases using specifically designed DNA substrates: UvrD enzyme activity detection on a stretched nicked DNA molecule, HCV NS3 helicase unwinding of a RNA hairpin under tension, the observation of RecBCD helicase/nuclease forward and backward motion, and T7 gp4 helicase mediated opening of a synthetic DNA replication fork. We then discuss experiments on two dsDNA translocases: the RuvAB motor studied on its natural substrate, the Holliday junction, and the chromosome-segregation motor FtsK, showing its unusual coupling to DNA supercoiling

    Mise en oeuvre de l'éco-conception pour des systèmes industriels complexes : de l'ACV par scénarios à la définition d'un portefeuille de projets de R&D éco-innovants

    No full text
    Face to the growing awareness of environmental concerns issued from human activities, eco-design aims at offering a satisfying answer in the products and services development field. However when the considered products become complex industrial systems, there is a lack of adapted methodologies and tools. These systems are among others characterised by a large number of components and subsystems, an extremely long and uncertain life cycle, or complex interactions with their geographical and industrial environment. This change of scale actually brings different constraints, as well in the evaluation of environmental impacts generated all along the system life cycle (data management and quality, detail level according to available resources…) as in the identification of adapted answers (management of multidisciplinary aspects and available resources, players training, inclusion in an upstream R&D context…). So this dissertation aims at developing a methodology to implement ecodesign of complex industrial systems. A general methodology is first proposed, based on a DMAIC process (Define, Measure, Analyse, Improve, Control). This methodology allows defining in a structured way the framework (objectives, resources, perimeter, phasing…) and rigorously supporting the ecodesign approach applied on the system. A first step of environmental evaluation based on Life-Cycle Assessment (LCA) is thus performed at a high systemic level. Given the complexity of the system life cycle as well as the exploitation variability that may exist from one site to another, a scenario-based approach is proposed to quickly consider the space of possible environmental impacts. Scenarios of exploitation are defined thanks to the SRI (Stanford Research Institute) matrix and they include numerous elements that are rarely considered in LCA, like preventive and corrective maintenance, subsystems upgrading or lifetime modulation according to the economic context. At the conclusion of this LCA the main impacting elements of the system life cycle are known and they permit to initiate the second step of the eco-design approach centred on environmental improvement. A multidisciplinary working group perform a creativity session centred on the eco-design strategy wheel (or Brezet wheel), a resource-efficient eco-innovation tool that requires only a basic environmental knowledge. Ideas generated during creativity are then analysed through three successive filters allowing: (1) to pre-select and to refine the best projects; (2) to build a R&D projects portfolio thanks to a multi-criteria approach assessing not only their environmental performance, but also their technical, economic and customers’ value creation performance; (3) to control the portfolio balance according to the company strategy and the projects diversity (short/middle/long term aspect, systemic level…). All this work was applied and validated at Alstom Grid on electrical conversion substations used in the primary aluminium industry. The methodology deployment has allowed initiating a robust eco-design approach recognized by the company and finally generating a portfolio composed of 9 eco-innovative R&D projects that will be started in the coming months.Face à l’émergence des problématiques environnementales issues des activités humaines, l’écoconception s’attache à offrir une réponse satisfaisante dans le domaine de la conception de produits et services. Cependant, lorsque les produits considérés deviennent des systèmes industriels complexes, caractérisés entre autres par un grand nombre de composants et sous-systèmes, un cycle de vie extrêmement long et incertain, ou des interactions complexes avec leur environnement géographique et industriel, un manque évident de méthodologies et d’outils se fait ressentir. Ce changement d’échelle apporte en effet des contraintes différentes aussi bien dans l’évaluation des impacts environnementaux générés au cours du cycle de vie du système (gestion et qualité des données, niveau de détail de l’étude par rapport aux ressources disponibles…) que dans l’identification de réponses adaptées (gestion de la multidisciplinarité et des ressources disponibles, formation des acteurs, inclusion dans un contexte de R&D très amont…). Cette thèse vise donc à développer une méthodologie de mise en œuvre d’une démarche d’éco-conception de systèmes industriels complexes. Une méthodologie générale est tout d’abord proposée, basée sur un processus DMAIC (Define, Measure, Analyse, Improve, Control). Cette méthodologie permet de définir de manière formalisée le cadre de la démarche (objectifs, ressources, périmètre, phasage…) et d’accompagner rigoureusement l’approche d’écoconception sur le système considéré. Une première étape d’évaluation environnementale basée sur l’Analyse du Cycle de Vie (ACV) à haut niveau systémique est ainsi réalisée. Etant donnée la complexité du cycle de vie considéré et la variabilité d’exploitation d’un système industriel d’un site à l’autre, une approche par scénario est proposée afin d’appréhender rapidement l’étendue possible des impacts environnementaux. Les scénarios d’exploitation sont définis à l’aide de la matrice SRI (Stranford Research Institute) et intègrent de nombreux éléments rarement abordés en ACV, comme la maintenance préventive et corrective, la mise à niveau des sous-systèmes ou encore la modulation de la durée de vie du système en fonction du contexte économique. A l’issue de cette ACV les principaux postes impactants du cycle de vie du système sont connus et permettent d’entreprendre la seconde partie de la démarche d’éco-conception centrée sur l’amélioration environnementale. Un groupe de travail multidisciplinaire est réuni lors d’une séance de créativité centrée autour de la roue de la stratégie d’éco-conception (ou roue de Brezet), un outil d’éco-innovation peu consommateur de ressources et ne nécessitant qu’une faible expertise environnementale. Les idées générées en créativité sont alors traitées par trois filtres successifs, qui permettent : (1) de présélectionner les meilleurs projets et de les approfondir ; (2) de constituer un portefeuille de projets de R&D par une approche multicritère évaluant leur performance environnementale, mais également technique, économique et de création de valeurs pour les clients ; (3) de contrôler l’équilibre du portefeuille constitué en fonction de la stratégie de l’entreprise et de la diversité des projets considérés (aspects court/moyen/long terme, niveau systémique considéré…). L’ensemble des travaux a été appliqué et validé chez Alstom Grid sur des sous-stations de conversion électrique utilisées dans l’industrie de l’aluminium primaire. Le déploiement de la méthodologie a permis d’initier une démarche solide d’écoconception reconnue par l’entreprise et de générer au final un portefeuille de 9 projets de R&D écoinnovants qui seront mis en œuvre dans les prochains mois

    Eco-design implementation for complex industrial system : From scenario-based LCA to the definition of an eco-innovative R&D projects portfolio

    No full text
    Face à l’émergence des problématiques environnementales issues des activités humaines, l’écoconception s’attache à offrir une réponse satisfaisante dans le domaine de la conception de produits et services. Cependant, lorsque les produits considérés deviennent des systèmes industriels complexes, caractérisés entre autres par un grand nombre de composants et sous-systèmes, un cycle de vie extrêmement long et incertain, ou des interactions complexes avec leur environnement géographique et industriel, un manque évident de méthodologies et d’outils se fait ressentir. Ce changement d’échelle apporte en effet des contraintes différentes aussi bien dans l’évaluation des impacts environnementaux générés au cours du cycle de vie du système (gestion et qualité des données, niveau de détail de l’étude par rapport aux ressources disponibles…) que dans l’identification de réponses adaptées (gestion de la multidisciplinarité et des ressources disponibles, formation des acteurs, inclusion dans un contexte de R&D très amont…). Cette thèse vise donc à développer une méthodologie de mise en œuvre d’une démarche d’éco-conception de systèmes industriels complexes. Une méthodologie générale est tout d’abord proposée, basée sur un processus DMAIC (Define, Measure, Analyse, Improve, Control). Cette méthodologie permet de définir de manière formalisée le cadre de la démarche (objectifs, ressources, périmètre, phasage…) et d’accompagner rigoureusement l’approche d’écoconception sur le système considéré. Une première étape d’évaluation environnementale basée sur l’Analyse du Cycle de Vie (ACV) à haut niveau systémique est ainsi réalisée. Etant donnée la complexité du cycle de vie considéré et la variabilité d’exploitation d’un système industriel d’un site à l’autre, une approche par scénario est proposée afin d’appréhender rapidement l’étendue possible des impacts environnementaux. Les scénarios d’exploitation sont définis à l’aide de la matrice SRI (Stranford Research Institute) et intègrent de nombreux éléments rarement abordés en ACV, comme la maintenance préventive et corrective, la mise à niveau des sous-systèmes ou encore la modulation de la durée de vie du système en fonction du contexte économique. A l’issue de cette ACV les principaux postes impactants du cycle de vie du système sont connus et permettent d’entreprendre la seconde partie de la démarche d’éco-conception centrée sur l’amélioration environnementale. Un groupe de travail multidisciplinaire est réuni lors d’une séance de créativité centrée autour de la roue de la stratégie d’éco-conception (ou roue de Brezet), un outil d’éco-innovation peu consommateur de ressources et ne nécessitant qu’une faible expertise environnementale. Les idées générées en créativité sont alors traitées par trois filtres successifs, qui permettent : (1) de présélectionner les meilleurs projets et de les approfondir ; (2) de constituer un portefeuille de projets de R&D par une approche multicritère évaluant leur performance environnementale, mais également technique, économique et de création de valeurs pour les clients ; (3) de contrôler l’équilibre du portefeuille constitué en fonction de la stratégie de l’entreprise et de la diversité des projets considérés (aspects court/moyen/long terme, niveau systémique considéré…). L’ensemble des travaux a été appliqué et validé chez Alstom Grid sur des sous-stations de conversion électrique utilisées dans l’industrie de l’aluminium primaire. Le déploiement de la méthodologie a permis d’initier une démarche solide d’écoconception reconnue par l’entreprise et de générer au final un portefeuille de 9 projets de R&D écoinnovants qui seront mis en œuvre dans les prochains mois.Face to the growing awareness of environmental concerns issued from human activities, eco-design aims at offering a satisfying answer in the products and services development field. However when the considered products become complex industrial systems, there is a lack of adapted methodologies and tools. These systems are among others characterised by a large number of components and subsystems, an extremely long and uncertain life cycle, or complex interactions with their geographical and industrial environment. This change of scale actually brings different constraints, as well in the evaluation of environmental impacts generated all along the system life cycle (data management and quality, detail level according to available resources…) as in the identification of adapted answers (management of multidisciplinary aspects and available resources, players training, inclusion in an upstream R&D context…). So this dissertation aims at developing a methodology to implement ecodesign of complex industrial systems. A general methodology is first proposed, based on a DMAIC process (Define, Measure, Analyse, Improve, Control). This methodology allows defining in a structured way the framework (objectives, resources, perimeter, phasing…) and rigorously supporting the ecodesign approach applied on the system. A first step of environmental evaluation based on Life-Cycle Assessment (LCA) is thus performed at a high systemic level. Given the complexity of the system life cycle as well as the exploitation variability that may exist from one site to another, a scenario-based approach is proposed to quickly consider the space of possible environmental impacts. Scenarios of exploitation are defined thanks to the SRI (Stanford Research Institute) matrix and they include numerous elements that are rarely considered in LCA, like preventive and corrective maintenance, subsystems upgrading or lifetime modulation according to the economic context. At the conclusion of this LCA the main impacting elements of the system life cycle are known and they permit to initiate the second step of the eco-design approach centred on environmental improvement. A multidisciplinary working group perform a creativity session centred on the eco-design strategy wheel (or Brezet wheel), a resource-efficient eco-innovation tool that requires only a basic environmental knowledge. Ideas generated during creativity are then analysed through three successive filters allowing: (1) to pre-select and to refine the best projects; (2) to build a R&D projects portfolio thanks to a multi-criteria approach assessing not only their environmental performance, but also their technical, economic and customers’ value creation performance; (3) to control the portfolio balance according to the company strategy and the projects diversity (short/middle/long term aspect, systemic level…). All this work was applied and validated at Alstom Grid on electrical conversion substations used in the primary aluminium industry. The methodology deployment has allowed initiating a robust eco-design approach recognized by the company and finally generating a portfolio composed of 9 eco-innovative R&D projects that will be started in the coming months

    Eco-innover rapidement grâce à la roue de la stratégie d'éco-conception de Brezet

    No full text
    National audienceVous souhaitez entreprendre une démarche d'éco-innovation en générant rapidement et simplement de nombreux concepts à fort potentiel d'amélioration environnementale. De nombreux outils d'éco-innovation existent aujourd'hui pour supporter une telle démarche. Certains sont destinés à un public expert en éco-conception ou supposent la mise en place d'une démarche assez lourde. Vous trouverez dans cette fiche comment s'affranchir de ces problèmes grâce à la roue de la stratégie d'éco-conception de Brezet, un outil présentant de nombreux bénéfices : * Grande simplicité d'utilisation, * Rapidité de mise en œuvre, * Prise en compte de l'ensemble du cycle de vie, * Non nécessairement basé sur une évaluation environnementale détaillée (type ACV), * Stimule la collaboration multi-métier dans l'entreprise, * Econome en ressources (hommes, temps, moyens)

    L'Analyse de Cycle de Vie comme outil de reconception et de conduite du changement

    No full text
    National audienceVous souhaitez mettre en œuvre une démarche robuste de reconception basée sur l'environnement et la durabilité. L'Analyse du Cycle de Vie (ACV) permet d'ancrer cette approche dans votre organisation. Maintenant largement déployée dans les entreprises, celle-ci vous apporte : * Une base scientifique normalisée (ISO 14040 et ISO 14044), * Une meilleure connaissance de vos produits/services, * Une identification précise des impacts environnementaux potentiels générés au cours du cycle de vie de vos produits/services, * Une assise solide à la génération d'éco-innovations, Plus généralement l'ACV s'intègre parfaitement à une démarche intégrée d'amélioration continue basée sur l'environnement
    • …
    corecore